Generation of Naivetropic Induced Pluripotent Stem Cells from Parkinson's Disease Patients for High-Efficiency Genetic Manipulation and Disease Modeling

نویسندگان

  • Zhixing Hu
  • Jiali Pu
  • Houbo Jiang
  • Ping Zhong
  • Jingxin Qiu
  • Feng Li
  • Xiaomin Wang
  • Baorong Zhang
  • Zhen Yan
  • Jian Feng
چکیده

The lack of robust Parkinson's disease (PD) phenotype in parkin knockout rodents and the identification of defective dopaminergic (DA) neurotransmission in midbrain DA neurons derived from induced pluripotent stem cells (iPSC) of PD patients with parkin mutations demonstrate the utility of patient-specific iPSCs as an effective system to model the unique vulnerabilities of midbrain DA neurons in PD. Significant efforts have been directed at developing efficient genomic engineering technologies in human iPSCs to study diseases such as PD. In the present study, we converted patient-specific iPSCs from the primed state to a naivetropic state by DOX-induced expression of transgenes (Oct4, Sox2, Klf4, c-Myc, and Nanog) and the use of 2iL (MEK inhibitor PD0325901, GSK3 inhibitor CHIR99021, and human LIF). These patient-specific naivetropic iPSCs were pluripotent in terms of marker expression, spontaneous differentiation in vitro, and teratoma formation in vivo. They exhibited morphological, proliferative, and clonogenic characteristics very similar to naive mouse embryonic stem cells (ESC). The high clonal efficiency and proliferation rate of naivetropic iPSCs enabled very efficient gene targeting of GFP to the PITX3 locus by transcription activator-like effector nuclease. The naivetropic iPSCs could be readily reverted to the primed state upon the withdrawal of DOX, 2iL, and the switch to primed-state hESC culture conditions. Midbrain DA neurons differentiated from the reverted iPSCs retained the original phenotypes caused by parkin mutations, attesting to the robustness of these phenotypes and the usefulness of genomic engineering in patient-specific naivetropic iPSCs for studying PD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models

The development of the technology for derivation of induced pluripotent stem (iPS) cells from human patients and animal models has opened up new pathways to the better understanding of many human diseases, and has created new opportunities for therapeutic approaches. Here, we consider one important neurological disease, Parkinson's, the development of relevant neural cell lines for studying thi...

متن کامل

Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy

The cellular and molecular bases of neurological diseases have been studied for decades; however, the underlying mechanisms are not yet fully elucidated. Compared with other disorders, diseases of the nervous system have been very difficult to study mainly due to the inaccessibility of the human brain and live neurons in vivo or in vitro and difficulties in examination of human postmortem brain...

متن کامل

Patient-derived stem cells: pathways to drug discovery for brain diseases

The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS). The second is patient-derived stem cells for modeling the cell biology of brain diseases. HCS has developed from the requirements o...

متن کامل

MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling

Human disease animal models are absolutely invaluable tools for our understanding of mechanisms involved in both physiological and pathological processes. By studying various genetic abnormalities in these organisms we can get a better insight into potential candidate genes responsible for human disease development. To this point a mouse represents one of the most used and convenient species fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015